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Abstract
We propose a new kind of two-parameter (p, q)-deformed Heisenberg and
parabose algebra, which reduces to the Heisenberg algebra for the p = 1 case
and to parabose algebra for q = −1 case. Corresponding to the two-parameter
deformed oscillator, we also introduce a new kind of (p, q)-deformed derivative
which relates to the ordinary derivative and q-deformed derivative in an explicit
manner. We study the structure of Fock-like space of the new (p, q)-deformed
oscillators and derive a formal solution for the eigenvalue equation of the
Hamiltonian.

PACS numbers: 02.20.Uw, 03.65.Fd, 11.30.Pb
Mathematics Subject Classification: 17B37, 81R50, 81Q60, 39A13

1. Introduction

Over the past decade and more there has been a lasting interest in the study of quantum groups
and algebras [1–4]. This is connected with the fact that these new mathematical structures are
relevant for various problems in theoretical physics, such as the quantum inverse scattering
method, exactly solvable statistical models, fractional statistics, and so on. It is also well
known that parastatistics were introduced by Green [5] who observed that it is not necessary
for all particles in nature to be either bosons or fermions because the principle of quantum
field theory allows a more general statistics which includes the usual ones as its limiting
cases.

On the other hand, deformed Heisenberg algebra with reflection (or R-deformed
Heisenberg algebra (RDHA)) appeared in the context of Wigner’s generalized quantization
schemes [6] underlying the concept of parafields and parastatistics of Green, Volkov, Greenberg
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and Messian [7, 8]. The RDHA represents, probably, one of the first examples of the
deformation of an ordinary harmonic oscillator which, as it was shown recently [9], possesses
some universality being also related to parafermions, to (2 + 1)-dimensional anyons and to
the bosonized form of supersymmetric quantum mechanics [10–12]. Besides, the RDHA
structure underlies the construction of fractional supersymmetry [13, 14].

In this work, we generalize the RDHA to a deformed Heisenberg algebra with dilation
by introducing a (p, q)-deformed derivative Dp,q . This generalization also has an intimate
relation to parabose algebra, because when the dilation parameter is q = −1, the deformed
Heisenberg algebra with dilation will reduce to the parabose algebra. So it can also be regarded
as a kind of q-deformed parabose algebra, however, different from other q-deformed parabose
algebras reported in the literature [15, 20, 30, 31]. The new deformations can be viewed
as a mixture of the q-deformed Heisenberg algebra [16] and the classical non-deformed
Heisenberg algebra, because the (p, q)-deformed derivative Dp,q is a combination of the
Jackson q-difference operator and the usual derivative satisfying with the coordinate operator,
respectively, the q-deformed and the non-deformed Heisenberg commutation relations. It
could also be of interest to mention here that the operator Dp,q in the paraboson case when
q = −1 after minor change of the deformation parameters is exactly a one-dimensional Dunkl
operator. In this sense, Dp,q can be regarded as a q-deformation of the Dunkl operator. The
one-dimensional Dunkl operator is the first one in the family of multi-dimensional Dunkl
differential–difference operators associated with reflection groups, the operators attracting
great interest due to their important role in the harmonic analysis on Riemannian symmetric
spaces and in the analysis of the quantum many body systems of Calogero–Moser–Sutherland
type [22–29].

One of the new features of our two-parameter deformation of the Heisenberg and parabose
algebras is that the ordinary relations [N, a] = −a and [a+, N] = −a+ are not satisfied in
general, but become additively modified by the q-commutator of qN with a and a+. Even though
the coordinate operator, the deformed derivative Dp,q and the corresponding number operator
obey those unmodified relations, it turns out that the deformation of the standard Hamiltonian
H = 1

2

(
x2 −D2

p,q

)
in the (p, q)-deformed coordinate-momentum representation with Dp,q in

the place of the derivative is a function of another number operator from a different algebra
with the modified relations. Motivated by this, we study the structure of Fock-like space
related to the deformed Heisenberg algebra with dilation and the modified oscillator relations.
The presence of modified oscillator relations results in a not ordinarily deformed Fock space
representation (see [17–19] for comparison). We also solve the eigenvalue equation for the
Hamiltonian H.

This paper is arranged as follows. In section 2, we introduce the (p, q)-deformed
derivative, study its main properties and introduce the deformed Heisenberg algebra with
dilation and a deformed parabose algebra. The basic properties of the new standard
Hamiltonian and its connection to the number-like operator are described in section 3. The
deformed Fock-like space structure and the eigenvalues of the corresponding number-like
operator Ñ are derived in section 4. Finally, in section 5, we consider the eigenvalue equation
for the Hamiltonian H, and obtain its formal solution.

2. A new kind of ( p, q)-deformed oscillator

Starting from the single-mode parabose oscillator, we can write the parabose algebraic
structure as the following trilinear commutation relations [5]:

[{b, b†}, b] = −2b, [b, {b†, b†}] = 4b† (2.1)
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where b† and b are creation and annihilation operators of the paraboson, respectively, N is
the number operator N = 1

2 {b, b†} − p

2 with the property [N, b] = −b, and p = 1, 2, 3, . . .

is the order of paraquantization. Its standard representation in the Fock space involves the
ket-vectors |n〉 ∼ (b†)n|0〉, where |0〉 is the ground-state vector, which requires, for complete
specification, not only the usual condition a|0〉 = 0, but also the additional one

bb†|0〉 = p|0〉. (2.2)

From the above algebraic relations we have

bb†|2n〉 = [2n + 1]p,−1|2n〉, bb†|2n + 1〉 = [2n + 2]p,−1|2n + 1〉,
b†b|2n〉 = [2n]p,−1|2n〉, b†b|2n + 1〉 = [2n + 1]p,−1|2n + 1〉, (2.3)

where the notation [x]p,−1 stands for

[x]p,−1 = x +
p − 1

2
(1 − (−1)x), (2.4)

and x can be any number or operator. Noticing N |n〉 = n|n〉, from (2.3) we get

bb† = 1
2 (1 + (−1)N)[N + 1]p,−1 + 1

2 (1 − (−1)N)[N + 1]p,−1 = [N + 1]p,−1. (2.5)

Similarly, we find

b†b = [N ]p,−1. (2.6)

Addition and subtraction give {b, b†} = 2N + p reproducing the definition of N, and

bb† − b†b = 1 + (p − 1)(−1)N , (2.7)

which is a bilinear commutation relation of a paraboson [5] and can be regarded as a
deformation of the ordinary Heisenberg algebra with p as a deformation parameter, and where
(−1)N ≡ R is usually called the reflection operator with the properties {R, b} = Rb +
bR = 0 and R2 = 1.

Noticing that [x]p,−1 = x + (p − 1)[x]−1, where [x]−1 is the Jackson q-number defined
as [x]q = qx−1

q−1 for q �= 1 and as x for q = 1 (see, for example, [21]), we introduce a more
general (p, q)-number

[x]p,q = x +
p − 1

q − 1
(qx − 1) = x + (p − 1)[x]q, (2.8)

which obviously reduces to (2.4) for q = −1. Corresponding to the new notation [x]p,q , we
also introduce a (p, q)-deformed derivative

Dp,q = D + (p − 1)Dq, (2.9)

where D is the ordinary derivative d/dx and Dq is the Jackson q-derivative defined as

Dqf (x) = d

dqx
f (x) = f (qx) − f (x)

(q − 1)x
, (2.10)

for q �= 1 and as D for q = 1. When p = 1 we recover the usual derivative D, and when
q = 1 we get Dp,1 = pD. For the paraboson case q = −1 we get a differential–difference
operator with reflection, which after a minor adjustment of the deformation parameters, is also
known as a one-dimensional Dunkl operator [22–24].

So in this sense the operator (2.9) can be viewed as a two-parameter deformation of the
one-dimensional Dunkl operator. We are grateful to Marcel de Jeu for bringing to our
attention this interesting connection, certainly worth exploiting further, for example, in
connection with deformations of multi-dimensional Dunkl operators.
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Obviously, with the new derivative Dp,q one has Dp,qx
n = [n]p,qx

n−1 and Dp,q eαx
p.q =

αex
p,q , where the (p, q)-exponential is defined as ex

p,q = ∑∞
n=0 xn/[n]p,q! with α being a

constant and the (p, q)-factorial given by [n]p,q! = ∏n
k=1[k]p,q with [0]p,q! ≡ 1.

The coordinate operator Mx : f (x) �→ xf (x), together with the derivative D and the
Jackson q-derivative Dq , obey the Heisenberg and the q-deformed Heisenberg commutation
relations [16], respectively:

DMx − MxD = I, DqMx − qMxDq = I. (2.11)

From these relations it follows that the operators Dp,q,Mx and the multiplicative shift
(rescaling) operator Rq = qMxD = qxD : f (x) �→ f (qx) and MxD = xD obey the following
relations:

Dp,qMx = [MxD + 1]p,q, MxDp,q = [MxD]p,q, (2.12)

which lead to an important commutation relation

Dp,qMx − MxDp,q = 1 + (p − 1)Rq. (2.13)

Obviously, for the p = 1 case it returns to the standard Heisenberg commutation relation and
for the q = −1 case to the parabose commutation relation [7, 8]. Straightforward calculations
give

RqMxR
−1
q = qMx, RqDR−1

q = q−1D, RqDp,qR
−1
q = q−1Dp,q, (2.14)

Dp,qMx − qMxDp,q = (1 − q)MxD + p. (2.15)

From the last relation we see that

MxD = 1

1 − q
([Dp,q,Mx]q − p), (2.16)

where [u, v]q = uv − qvu is the q-commutator. Note that (2.16) with (2.13) and (2.14) yields

[MxD,Dp,q] = −Dp,q, [MxD,Mx] = Mx, (2.17)

as expected.
Motivated by these observations, we propose

aa+ = [N + 1]p,q, a+a = [N ]p,q (2.18)

as the generalization of (2.5) and (2.6), leading to the relations

aa+ − a+a = 1 + (p − 1)qN, (2.19)

of a new two-parameter deformation of the oscillator algebra. It can also be regarded as a
q-deformed parabose algebra since for q = −1 it returns to (2.7). However, it is different from
other q-deformed parabose algebras reported in the literature [6]. Here, the number operator
N is defined via (2.19) and

aa+ + a+a = 2N + 1 +
p − 1

q − 1
(qN+1 + qN − 2), (2.20)

by the formula

N = 1

1 − q
([a, a+]q − pI). (2.21)

Note that (2.18), or more precisely its consequences (2.19) and (2.21), yields

[N, a] = −a +
p − 1

q − 1
(aqN − qN+1a) = −a +

p − 1

q − 1
[a, qN ]q, (2.22)
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[a+, N ] = −a+ +
p − 1

q − 1
(qNa+ − a+q

N+1) = −a+ +
p − 1

q − 1
[qN, a+]q . (2.23)

This means that the properties of the classical oscillator

[N, a] = −a, [a+, N] = −a+ (2.24)

hold here only under further special conditions, namely either when p = 1 or when
[a, qN ]q = 0 and [qN, a+]q = 0, which can be written equivalently in ‘quantum plane’
intertwining form

aqN = qN+1a = qqNa, qNa+ = a+q
N+1 = qa+q

N, (2.25)

or, using q−NqN = I and qN+1 = qqN , in the action form

qNaq−N = q−1a, qNa+q
−N = qa+. (2.26)

Moreover, relations (2.24) imply (2.25) and (2.26). So, when the fundamental relations (2.18)
of the deformed oscillator hold, relations (2.24) are equivalent to (2.25).

From (2.21) we have [a, a+]q = (1 − q)N + pI , and hence

[[a, a+]q, a] = (1 − q)[N, a] = −(1 − q)a − (p − 1)[a, qN ]q . (2.27)

When (2.24) or (2.25) hold, relation (2.27) becomes

[[a, a+]q, a] = (1 − q)[N, a] = −(1 − q)a. (2.28)

The parabose relation (2.1) is recovered for q = −1. So, we have obtained (p, q)-deformed
(2.27) and q-deformed (2.28) parabose algebra.

3. Hamiltonian for q-deformed parabosonic system

In this section, we deduce some fundamental properties of the standard Hamiltonian element

H = 1
2 ((a+)

2 − a2)

in the restricted q-deformed parabose algebra (2.18)–(2.21) with relations (2.24)–(2.26) and
(2.28). The canonical example of operators satisfying these restricted relations, according
to (2.11)–(2.17), is given by the operators Dp,q,Mx , the multiplicative rescaling operator Rq

and MxD = xD in the sense of the representation (a, a+, N) �→ (Dp,q,Mx,MxD). These
properties play an important role for investigation of the corresponding eigenvalue problem
which we consider in section 5.

We define ã and ã+ via the standard relations

ã = a+ + a√
2

, ã+ = a+ − a√
2

. (3.1)

After this transformation the Hamiltonian assumes another, also familiar, anticommutator
form

H = 1
2 ((a+)

2 − a2) = 1
2 (ãã+ + ã+ã).

We require that the new number operator Ñ together with ã and ã+ satisfy the same relations
as (2.18), namely

ãã+ = [Ñ + 1]p,q, ã+ã = [Ñ ]p,q . (3.2)
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Then, for ã and ã+, relations like (2.19), (2.20) hold

ãã+ − ã+ã = 1 + (p − 1)qÑ , (3.3)

ãã+ + ã+ã = 2Ñ + 1 +
p − 1

q − 1
(qÑ+1 + qÑ − 2), (3.4)

and hence

Ñ = 1

1 − q
([ã, ã+]q − pI) (3.5)

= 1

2

(
a2

+ − a2
)

+
1 + q

2(1 − q)
(aa+ − a+a) − p

1 − q
I

= H +
1 + q

2(1 − q)
(I + (p − 1)qN) − p

1 − q
I. (3.6)

Since ãã+ − ã+ã = aa+ − a+a, we get by (2.19) and (3.3) the equality

(p − 1)qÑ = (p − 1)qN (3.7)

which is equivalent to qÑ = qN when p �= 1. So, by (3.6) and (3.7), we have

Ñ = H +
1 + q

2(1 − q)
(I + (p − 1)qÑ ) − p

1 − q
I, (3.8)

H = Ñ − 1 + q

2(1 − q)
(I + (p − 1)qÑ ) +

p

1 − q
I. (3.9)

The equality (3.9) is of special interest for further investigation of H since it means that H
is the function F(x) = x − 1+q

2(1−q)
(I + (p − 1)qx) + p

1−q
of Ñ .

Note that

qÑ ãq−Ñ = 1
2 (q + q−1)ã + 1

2 (q − q−1)ã+ = cosh rã + sinh rã+ (q = er)

qÑ ã+q
−Ñ = 1

2 (q − q−1)ã + 1
2 (q + q−1)ã+ = sinh rã + cosh rã+,

which indicates that the usual relations [Ñ, ã] = −ã, [ã+, Ñ ] = −ã+ are not in general
satisfied in the new (p, q)-deformed oscillator, recalling our previous discussion on
relations (2.24)–(2.27). So, the transformation of generators (3.1) is not allowed if we insist on
preserving relation (2.28). Instead, the more general relations like (2.22), (2.23) and (2.27)
hold:

[Ñ, ã] = −ã +
p − 1

q − 1
(ãqÑ − qÑ+1ã) = −ã +

p − 1

q − 1
[ã, qÑ ]q, (3.10)

[ã+, Ñ ] = −ã+ +
p − 1

q − 1
(qÑ ã+ − ã+q

Ñ+1) = −ã+ +
p − 1

q − 1
[qÑ , ã+]q, (3.11)

[[ã, ã+]q, ã] = (1 − q)[Ñ, ã] = −(1 − q)ã − (p − 1)[ã, qÑ ]q . (3.12)

It would be of interest to have a description of some general classes of transformations of
generators preserving the q-deformed parabose relation (2.28). At this time, we do not know
a satisfactory solution to this problem.
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4. Fock space representation of the new oscillator

We have seen that the Hamiltonian H = 1
2 ((a+)

2 − a2) can be expressed as a function
of the new number operator Ñ for ã and ã+ satisfying more general deformed oscillator
relations (3.10). Motivated by this observation we study in this section the structure of the
Fock space of the oscillator (ã, ã+, Ñ).

As usual, we will assume that firstly the new oscillator is acting on the separable Hilbert
space with the inner product 〈u|v〉 and an orthonormal basis {|n〉}, n = 0, 1, 2, 3, . . . , meaning
that 〈m|n〉 = δm,n is 1 if m = n and 0 otherwise, and the completion relation

∑∞
n=0 |n〉〈n| = 1

holds; secondly at least the linear space spanned by {|n〉, n = 0, 1, 2, . . .} belongs to the
domains of definition of ã and ã+ and thirdly the involution condition ã+ = ã† is satisfied in
the sense that 〈n|ã+|m〉 = 〈n|ã†|m〉 = 〈m|ã|n〉 for any two basis elements. Note that with the
involution condition ã+ = ã† the operator Ñ is a normal operator meaning that ÑÑ † = Ñ †Ñ .
Finally and most importantly for some scalars εn we assume

Ñ |n〉 = εn|n〉, ã|0〉 = 0, |n〉 = eiθncnã
†n|0〉

where cn is positive and θn is a real number for any n = 0, 1, 2, 3, . . . . Note that the involution
condition ã+ = ã† and (3.2) imply that [εn]p,q and [εn + 1]p,q should be nonnegative numbers.
If we do not assume any involution condition, then there is no such extra restriction on εn.

In order to find the eigenvalues εn of Ñ , note that using (3.2) we get

(1 − q)Ñ ã† = (ãã† − qã†ã − pI)ã† = ([N + 1]p,q ã
† − qã†[N + 1]p,q − pã†),

(1 − q)εn+1|n + 1〉 = (1 − q)Ñ |n + 1〉 = ([εn+1 + 1]p,q − q[εn + 1]p,q − p)|n + 1〉,
resulting in the implicit recurrence equations for {εn}, n = 0, 1, 2, 3, . . .:

[εn+1 + 1]p,q − (1 − q)εn+1 = q[εn + 1]p,q + p, (4.1)

which is equivalent to [εn+1]p,q = [εn + 1]p,q for q �= 0. For ε0, we have

(1 − q)ε0|0〉 = (1 − q)Ñ |0〉 = (ãã† − qã†ã − pI)|0〉
= ([Ñ + 1]p,g − pI)|0〉 = ([ε0 + 1]p,g − p)|0〉,

(1 − q)ε0 = [ε0 + 1]p,g − p,

(4.2)

or equivalently

[ε0]p,g = ε0 + (p − 1)[ε0]q = 0. (4.3)

When q = 1 we get pε0 = 0 thus for p �= 0 recovering the classical result ε0 = 0 for the
ground state of the usual quantum harmonic oscillator. Note that the equation can also be
written as (p − 1)qε0 = −(q − 1)ε0 + (p − 1). But, in this form we do not get any information
on ε0 for the case q = 1.

The implicit recurrence relations (4.1) can also be written as

[εn+1 + 1]p,q − (1 − q)εn+1 − q([εn + 1]p,q − (1 − q)εn) = q(1 − q)εn + p. (4.4)

This equation expresses a nonlinear function of εn+1 via a nonlinear function of εn. But,
after taking the convolution of both sides with (qk), k = 0, . . . , n, and making a telescope
summation on the left-hand side of this equation we get

[εn+1 + 1]p,q − (1 − q)εn+1 = (1 − q)q

n∑
k=0

εn−kq
k + [n + 2]qp, (4.5)

expressing a nonlinear function of εn+1 as a linear combination of 1, ε0, . . . , εn. In particular,
for n = 0 we get [ε1 + 1]p,q − (1 − q)ε1 = (1 − q)qε0 + [2]qp. For q = 1 or p = 1, we get
ε1 = 1 as expected.
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In a sense the sequence (εk), k = 0, 1, . . . , can be viewed as a new number system
generalizing or deforming the natural numbers. The defining recurrence equations for these
numbers are not algebraic except for some special values of the deformation parameters.
Of course while these recurrence equations can be used to calculate the approximations of
eigenvalues (εk), k = 0, 1, . . . numerically, it could also be important to get deeper insight into
number theoretical, structural and combinatorial properties of these new numbers so intimately
connected with deformed oscillators and parastatistics.

In order to specify completely the action of the operators ã and ã†, it is left to find the
normalizing constants (cn, n = 0, 1, 2, . . .) because

ã|n + 1〉 = exp(i(θn+1 − θn))
cn+1

cn

ãã†|n〉 = exp(i(θn+1 − θn))
cn+1

cn

[εn + 1]p,q |n〉 (4.6)

ã†|n〉 = exp(i(θn − θn+1))
cn

cn+1
|n + 1〉, for n = 0, 1, 2, . . . . (4.7)

Using the normalization condition 〈n + 1|n + 1〉 = 1 and the involution condition we get

c2
n+1 =

(
n∏

k=0

[εk + 1]p,q

)−1

,

(
cn+1

cn

)2

= [εn + 1]−1
p,q, (4.8)

ã|n + 1〉 = exp(i(θn+1 − θn))[εn + 1]
1
2
p,q |n〉, (4.9)

ã†|n〉 = exp(i(θn − θn+1))[εn + 1]
1
2
p,q |n + 1〉. (4.10)

5. An eigenvalue equation for q-deformed parabosonic system

In the Fock representations (4.3), (4.4), the standard Hamiltonian H = 1
2 ((a+)

2 − a2) is
diagonal on the basis {|n〉}, namely H |n〉 = En|n〉 with eigenvalue En = 1+q

2 [εn]p,q +
1−q

2 εn + p

2 as follows from (3.9). In this section, we consider an eigenvalue equation for
the Hamiltonian H in the coordinate-momentum representation of the q-deformed parabose
algebra (2.28).

According to (2.11)–(2.17), the operators Dp,q,Mx , the multiplicative rescaling operator
Rq and MxD = xD obey all the commutation relations (2.18)–(2.28) in the sense of the
representation (a, a+, N) �→ (Dp,q,Mx,MxD). So, the operators Dp,q and Mx can be viewed
as an analogue, for the new oscillator, of the canonical coordinate-momentum representation
of the non-deformed Heisenberg commutation relation. In this representation, the Hamiltonian
becomes

Hc = 1
2 ((a+)

2 − a2) = 1
2x2 − 1

2D2
p,q, (5.1)

and we consider the eigenvalue problem

Hcψ(x) = 1
2x2ψ(x) − 1

2D2
p,qψ(x) = λψ(x). (5.2)

Note that in the canonical representation (a, a+, N) �→ (Dp,q,Mx,MxD) we have

ã = Mx + Dp,q√
2

, ã+ = Mx − Dp,q√
2

, (5.3)

Ñ = H +
1 + q

2(1 − q)
(I + (p − 1)Rq) − p

1 − q
I = H − p

2
I − (1 + q)(p − 1)

2
MxDq. (5.4)
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The factorization of solution to a product of a polynomial and a Gaussian-like term, so nicely
resolving the problem for the case of the non-deformed oscillator and for the parabose case
q = −1, seems to be difficult if not impossible for the general q. We will look here for a
solution, without making any prior factorizations, directly in the power series form ψ(x) =∑∞

k=0 hkx
k . Substituting this series into (5.2) we get the following recurrence equations for

the coefficients:

hk−2 − hk+2[k + 2]p,q[k + 1]p,q = 2λhk, k = 2, 3, 4, . . . , (5.5)

h2[2]p,q[1]p,q = −2λh0, h3[3]p,q[2]p,q = −2λh1. (5.6)

Multiplication of (5.5) by appropriate coefficients and telescopic summation on the left-hand
side gives

hk−2−4l − hk+2

l∏
j=0

[k + 2 − 4j ]p,q[k + 1 − 4j ]p,q

= 2λ

l∑
s=0

hk−4s

l−s−1∏
j=0

[k + 2 + 4(j − l)]p,q[k + 1 + 4(j − l)]p,q . (5.7)

Putting, for example, k = 4l + 2 we get

h0 − h4(l+1)

l∏
j=0

[4(l − j + 1)]p,q [4(l − j + 1) − 1]p,q

= 2λ

l∑
s=0

h4(l−s)+2

l−s−1∏
j=0

[4(l + j)]p,q[4(l + j) − 1]p,q . (5.8)

Solutions of the recurrence equations (5.5), (5.6) can be easily expressed in terms of continued
fractions as follows:

h2k = h0

(
k∏

l=1

γ −1
2l

)
, h2k+1 = h1

(
k∏

l=1

γ −1
2l+1

)
,

γ2k = α2k(−2λ + α2(k−1)(· · · + α2(k−j)(· · · + α2(−2λ + γ0)
−1)−1 · · ·)−1

= g2k ◦ g2(k−1) ◦ · · · ◦ g2(k−j) ◦ · · · ◦ g2(0), γ0 = 0

γ2k+1 = α2k+1(−2λ + α2(k−1)+1(· · · + α2(k−j)+1(· · · + α3(−2λ + γ1)
−1)−1 · · ·)−1

= g2k+1 ◦ g2(k−1)+1 ◦ · · · ◦ g2(k−j)+1 ◦ · · · ◦ g3(0), γ1 = 0

g2j (x) = α2j (−2λ + x)−1, g2j+1(x) = α2j+1(−2λ + x)−1, j = 1, 2, 3, . . . ,

αk+2 = [k + 2]p,q[k + 1]p,q, k = 0, 1, 2, 3, . . . .

It should of course be of great interest to find further expressions of hk in terms of some
known deformed special and combinatorial functions, study convergence and other analytic
properties of ψ and also describe solutions for non-generic values of parameters p and q
leading to division by zero in the formulae for hk . We hope to address these problems in
further publications.
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